
Electron Transport in the Presence of Magnetic Fields

Pranjal Vachaspati∗

Massachusetts Institute of Technology
(Dated: December 21, 2013)

In the presence of a magnetic field, a two-dimensional conductor will experience various corrections
to its resistance. A transverse conductivity, known as the Hall conductivity, will appear that creates
a potential drop perpendicular to the direction of current flow. Furthermore, the longitudinal
conductivity oscillates at a function of magnetic field strength for strong fields. The transverse
conductivity is enhanced in a ferromagnetic material and exists even at zero magnetic field.

I. INTRODUCTION

The Hall effect is one of the oldest and most stud-
ied electromagnetic phenomena. The classical effect was
first observed in 1879 by Edwin Hall[1], who found that
passing a current through a gold leaf in the presence of a
magnetic field resulted in the development of a transverse
ohmic potential. Notably, this preceded the discovery of
the electron by eighteen years.

In spite of its early discovery, the effect has theoret-
ical and experimental features that require high preci-
sion and a deep understanding of the underlying physics.
Here, two aspects are discussed. The first is the appear-
ance of plateaus with very precise resistances in the Hall
resistance at high magnetic fields, known as the integer
quantum Hall effect. The second is the existence of a
Hall effect in ferromagnetic materials greater than would
be predicted based only on their internal magnetic field.
This effect was first discovered in iron by Hall in 1881,
but the mechanisms are still being debated.

II. CLASSICAL HALL EFFECT

In the presence of a magnetic field ~B in the ẑ direction,
electrons traveling through a conductor in the x̂ direction
will experience a force in the ŷ direction:

~FB = e~v × ~B. (1)

The classical drift velocity is given by

~v =
~I

neA
, (2)

which gives a magnetic force of

~FB =
~I × ~B

nA
. (3)

This results in an electric field that matches that force:

~FE = Ee =
~I × ~B

nA
= ~FB (4)
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inducing a transverse Hall voltage of magnitude

VH = Ew =
IB

tne
(5)

where t is the thickness of the conductor in the ẑ direction
and w is the width in the ŷ direction. Note that e carries
the sign of the charge carrier, so measurements of the
Hall voltage distinguish between positive and negative
charge carriers.

III. LANDAU LEVELS

Under quantum mechanics, free electrons in a magnetic
field no longer follow classical cyclotron orbits. Rather,
the electrons are confined to a set of discrete orbits,
known as Landau levels. Under a Landau gauge, a mag-
netic field in the ẑ direction has the vector potential

~A = Byx̂, (6)

and the resulting Hamiltonian is

H =
1

2m

(
~p− q

c
~A
)2

(7)

H =
p2y
2m

+
1

2m

(
px −

qBy

c

)2

. (8)

The x momentum px commutes with the Hamiltonian,
so px can be replaced by its eigenvalues, h̄kx, where kx =
2πn
Lx

for some integer n, given a sample with width Lx.

Also, qB
mc is the classical cyclotron frequency ωc. Then

the Hamiltonian becomes

H =
p2y
2m

+
mω2

c

2

(
y − h̄kx

mωc

)2

, (9)

which is a shifted harmonic oscillator centered at

y =
h̄kx
mωc

. (10)

This imposes another constraint on kx, since the cen-
ter of the harmonic oscillator must be inside the sample.
Therefore,

0 ≤ n ≤ ωcmLxLy
2πh̄

, (11)
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implying that there are

M =

⌊
ωcmA

2πh̄

⌋
(12)

states in each Landau level, with states in the mth level
having energy mh̄ωc. The eigenstates are described by
|m, k〉, and the states in a given Landau level are strips
of uniform probability that extend across the sample in
the x̂ direction and are localized in the ŷ direction.

IV. QUANTUM HALL EFFECT

A. Appearance of Edge States

Consider a two-dimensional conductor that is long in
the x̂ direction and narrow in the ŷ direction. A realistic
sample will have a potential like that in Figure 1, with a
higher energy near the edges. To first order, the energy
of a Landau level state in this potential is

E = E0 + 〈m, k|U(y)|m, k〉. (13)

The ŷ position of a state is a function of the momentum
k as described by Equation 10. For large magnetic fields,
an individual state takes only a small portion of the ŷ
extent of the sample, so the potential can be considered
constant and the energy is simply shifted by U(y). This
causes a splitting of the degeneracy in Landau levels near
the edge of the sample. The group velocity of electrons
near the edge is given by

vg =
1

h̄

∂E

∂k
=
∂U(y)

∂k
=
∂U(y)

∂y

∂y

∂k
=
∂U(y)

dy

c

eB
. (14)

Surprisingly, this indicates that the states moving in
the +x̂ direction are on the opposite edge as those moving
in the −x̂ direction, while electrons in the center have no
net velocity.

B. Hall Voltage

Now, if a voltage V is applied in the +x̂ direction, the
Fermi velocity of the electrons moving in the −x̂ direction
will increase, while the Fermi velocity of the electrons in
the +x̂ direction will decrease, such that the difference
between the Fermi energies is equal to the applied volt-
age. The spatial splitting of the edge states then means
that the electrons on one side have a Fermi energy that
is qV greater than the electrons on the other side. Thus,
the Hall voltage VH is equal to the applied voltage.

For momentum to be lost in the transport process,
rightwards-moving electrons must scatter into leftwards-
moving electrons or vice versa. However, if there are no
Landau levels between the Fermi energies of the contacts,
the mobile states at one edge cannot travel through the
center of the sample to get to the other edge and scatter.

y

U(y)

FIG. 1. The ŷ potential of a narrow two-dimensional conduc-
tor pointing along the x̂ direction

µR

µL

y

E(m, y)

FIG. 2. The presence of an electric potential creates an asym-
metry in the filling of the Landau levels

Thus, there is no momentum loss. This means that the
voltage drop between two points on the same edge of the
conductor is zero, so the longitudinal resistance of the
sample is also zero.

Of course, when Landau levels are present between
the Fermi energies of the contacts, particles can scatter
through the center and lose momentum. This results in
characteristic peaks in the magnetic field-resistance dia-
gram in Figure 3.

C. Hall Current

The band structure for the conductor in a strong mag-
netic field is given in Figure 2. The current is equal to
the single-band current times the number of bands, and
is given by

I =
4πe

h̄
M(µR − µL). (15)

The Hall resistance takes the value VH/I, which give the
result

RH =
h̄

4πe2M
, (16)

with M given in Equation 12. This causes a plateau in
the Hall resistance for each Landau level as the magnetic
field is varied (Figure 3).

V. QUANTUM ANOMALOUS HALL EFFECT

In a ferromagnetic material, a quantum anomalous
Hall effect is present in addition to the standard effect
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FIG. 3. The longitudinal resistance oscillates at high mag-
netic fields, while the Hall resistance experiences plateaus[2]

that depends not on the external magnetic field, but on
the internal magnetization of the sample. Although this
effect has been observed for nearly as long as the classi-
cal Hall effect, it is significantly less well understood than
the classical or quantum effects. In the past few decades,
a geometrical explanation based on the Berry phase has
gained favor [3], but here we describe a recent theory
based on coupling of magnetic moments to the angular
momentum density of the electromagnetic field [4].

A. EM Angular Momentum - Magnetic Moment
Coupling

First, we define two important quantities. The angular
momentum density of an electromagnetic field is

~J = ~r × ~p =
1

c2
~r × ( ~E × ~H). (17)

The magnetic toroidal moment is defined as

~T =
1

2

∫
(~r ×M)d3r (18)

where M is the magnetization of the sample at a given
point.

The toroidal moment couples to the cross product of
the electric and magnetic fields [5] to give an energy of

U = a~T · ( ~E × ~H), (19)

where a is a constant that depends on the material. We
can substitute in Equation 18 to find

U = a
1

2

∫
d3r(~r ×M) · ( ~E × ~H) (20)

= −a1

2

∫
(~r × ( ~E × ~H)) · Md3r = −ac

2

2

∫
J ·M d3r.

(21)

Hence, we observe a coupling between the electromag-
netic angular momentum and magnetic moments.

B. Coupling in Ferromagnetic Materials

In a ferromagnet, the effective magnetic field ~H is a
combination of an applied field and the internal field due
to magnetization, given by

~H = (H0 + αM)ẑ = Hẑ. (22)

where we consider a magnetic field only in the ẑ direc-
tion. If we consider a single electron, we can eliminate
the integral over space in the coupling energy equations.
Furthermore, the magnetization in Equation 21 is simply
the magnetic moment µ of the electron (but the magne-
tization in Equation 22 is the bulk magnetization). Con-
verting to the Cartesian basis gives an energy of

U = −aH
2

(z(Exµx + Eyµy)− xExµz − yEyµz) . (23)

Now the force on the electron due to the angular mo-
mentum coupling is given by

F = −∇rU =

aH

2
(−Exµzx̂− Eyµz ŷ + (Exµx + Eyµy)ẑ) .

(24)

Note that this is separate from the Lorentz force.

C. Effect of Coupling on Transport

Applying the coupling force and the Lorentz force to
the Drude model of electron transport gives

dp

dt
= −e ~E − eH

cm
~p× ẑ

+
aH

2
(−Exµzx̂− Eyµz ŷ

+ (Exµx + Eyµy)ẑ)− ~p

τ

(25)

where τ is the characteristic collision time of the sys-
tem. In the steady state, the momenta are constant, so
dp/dt = 0, and the Drude model gives in each direction

0 = −eEx −
eH

cm
py −

aH

2
Exµz −

px
τ

(26)

0 = −eEy +
eH

cm
px −

aH

2
Eyµz −

py
τ

(27)

0 = −eEx +
aH

2
(Exµx + Eyµy)− pz

τ
(28)

As before, the current density j is nep/m. The steady-
state equations can be summed over all electrons, replac-
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ing µs with Ms, giving

jx = −ne
2τ

m
Ex −

eτH

cm
jy −

aHeτ

2m
ExMz (29)

jy = −ne
2τ

m
Ey +

eτH

cm
jx −

aHeτ

2m
EyMz (30)

jz = −ne
2τ

m
Ex +

naHeτ

2m
(ExMx + EyMy). (31)

Of course, in the Hall effect experimental setup, jy and
jz are set to zero, and the magnetization is purely in the

ẑ direction. Therefore,

jx =

(
−ne

2τ

m
− aHeτ

2m
Mz

)
Ex (32)

jx =
(nce
H

+
ac

2
Mz

)
Ey (33)

Ez = 0. (34)

The first line gives the longitudinal conductivity, and the
second line gives the Hall conductivity. The anomalous
Hall conductivity is the second term in the second equa-
tion, which depends on the magnetization of the sample
but not on the external field.

VI. CONCLUSION

We have examined the very well-understood classical
Hall effect, then seen how different environments can lead
to striking results and interesting physics. Operating at
very high magnetic fields results in a quantization of the
Hall resistance; in fact, the quantization is so precise that
it is used as the standard for the Ohm. We have further
described a zero-field effect in ferromagnetic materials
that enhances the Hall effect at non-zero fields.
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