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Abstract
Gene tree correction aims to improve the accuracy of a gene tree by using computational techniques
along with a reference tree (and in some cases available sequence data). It is an active area
of research when dealing with gene tree heterogeneity due to duplication and loss (GDL). Here,
we study the problem of gene tree correction where gene tree heterogeneity is instead due to
incomplete lineage sorting (ILS, a common problem in eukaryotic phylogenetics) and horizontal
gene transfer (HGT, a common problem in bacterial phylogenetics). We introduce TRACTION, a
simple polynomial time method that provably finds an optimal solution to the RF-Optimal Tree
Refinement and Completion Problem, which seeks a refinement and completion of an input tree
t with respect to a given binary tree T so as to minimize the Robinson-Foulds (RF) distance.
We present the results of an extensive simulation study evaluating TRACTION within gene tree
correction pipelines on 68,000 estimated gene trees, using estimated species trees as reference
trees. We explore accuracy under conditions with varying levels of gene tree heterogeneity due to
ILS and HGT. We show that TRACTION matches or improves the accuracy of well-established
methods from the GDL literature under conditions with HGT and ILS, and ties for best under the
ILS-only conditions. Furthermore, TRACTION ties for fastest on these datasets. TRACTION is
available at https://github.com/pranjalv123/TRACTION-RF and the study datasets are available
at https://doi.org/10.13012/B2IDB-1747658_V1.
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1 Introduction

Reconstructing the evolutionary history of a gene is a core task in phylogenetics, and our
ability to infer these evolutionary relationships accurately can have important implications for
a variety of downstream analyses. For example, estimated gene trees are used in the inference
of adaptation, evolutionary event detection (such as gene loss, gene duplication, and horizontal
gene transfer), ortholog identification, analysis of functional trait evolution, and species tree
estimation. However, unlike species tree estimation techniques that leverage information
encoded across the entire genome, gene tree estimation based on a single locus may not
contain enough signal to determine the correct gene tree topology with high confidence [27].
Indeed, many phylogenomic datasets have gene trees with average branch support well below
75%, which is a common lower bound for branches to be considered reliable. For example,
the Avian Phylogenomic Project [17] reported average branch support values below 30%,
and many other studies (surveyed in [25]) have had similar challenges. Estimating gene and
species trees is further complicated by biological processes such as gene duplication/loss
(GDL), incomplete lineage sorting (ILS), and horizontal gene transfer (HGT), that create
heterogeneous tree topologies across the genome [21]. HGT has long been known to cause
problems for bacterial phylogenetics, and ILS by itself has emerged as a major issue in
phylogenomics, affecting most, if not all, genome-scale datasets [10].

Because gene trees often have low accuracy, a natural problem is to try to improve
gene tree estimation using an estimated or known species tree. An approach from the gene
duplication and loss literature is to modify estimated gene trees with respect to a reference
species tree, which may either be an established tree from prior literature or an estimated
species tree (e.g., based on an assembled multi-locus dataset). Some of these methods use the
available sequence data as well as the estimated gene tree and species tree, and are referred to
as “integrative methods”; examples include ProfileNJ [27], TreeFix [33], and TreeFix-DTL [2].
Other methods, called “gene tree correction methods”, use just the topologies of the gene tree
and species tree, and are typically based on parametric models of gene evolution; Notung [6, 9]
and ecceTERA [16] are two of the well known methods of this type. Integrative methods
are generally expected to be more accurate than gene tree correction methods when gene
tree heterogeneity is due to GDL, but as a result of using likelihood calculations they are
also more computationally intensive. See [4, 26, 31, 18, 15, 16, 34] for an entry into the vast
literature on this subject.

Here, we examine the problem of gene tree correction for the case where gene tree
heterogeneity is due to ILS or HGT, and where each gene tree has at most one copy of
each species. We present a new approach to gene tree correction that is based on a very
simple non-parametric polynomial-time method, TRACTION, that is agnostic to the cause
of gene tree heterogeneity. In addition to correcting gene trees, TRACTION is also capable of
completing gene trees that do not contain all the species present in the reference species tree,
a condition that may occur in a multi-locus study as a result of taxon sampling strategies
or unavailable data (such as when not all genomes have been sequenced and assembled).
The input to TRACTION is a pair (t, T ) of unrooted phylogenetic trees. The leaf set of
t is a subset of the leaf set of T , tree T is binary, and tree t will generally be non-binary.
We seek a tree T ′ created by refining t and adding any missing leaves so that T ′ has the
minimum Robinson-Foulds (RF) [28] distance to T . We call this optimization problem
the “RF-Optimal Tree Refinement and Completion Problem” (RF-OTRC). We show that
TRACTION finds an optimal solution to this problem in O(n1.5 logn) time, where n is the
number of leaves in the species tree T . To use TRACTION for gene tree correction, we
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assume we are given an estimated gene tree with branch support values and an estimated (or
known) binary species tree, which may have additional species. The low support branches
in the gene tree are collapsed, forming the (unresolved) tree t. TRACTION has two steps:
first it refines the input gene tree t into a binary tree t′, and then it adds the missing species
to t′. Although the algorithm is quite simple, the proof of correctness is non-trivial. We
present the results of an extensive simulation study (on 68,000 gene trees, each with up to 51
species) in which gene tree heterogeneity is either due to only ILS or to both ILS and HGT.
We explore TRACTION for gene tree correction with estimated species trees in comparison
to Notung, ecceTERA, ProfileNJ, TreeFix, and TreeFix-DTL, evaluating the accuracy of the
corrected gene trees by computing the RF distance to the true gene tree. Overall, while many
methods (including TRACTION) tie for best on the ILS-only data, TRACTION dominates
the other gene tree correction methods with respect to topological accuracy on the HGT+ILS
data, and ties for fastest. Importantly, TRACTION provides good accuracy even when the
estimated species tree is far from the true gene tree. The simplicity of the approach and its
good accuracy under a range of different model conditions indicates that non-parametric
approaches to gene tree correction may be promising, and encourages future research.

2 TRACTION

2.1 Terminology and Basics
Each edge e in an unrooted phylogenetic tree defines a bipartition πe (also referred to as a
split) on the leaves of the tree induced by the deletion of e (but not its endpoints). Each
bipartition of the leaf set into two non-empty disjoint parts, A and B, is denoted by A|B.
The set of bipartitions of a tree T is given by C(T ) = {πe : e ∈ E(T )}, where E(T ) is the
edge set for T . Tree T ′ is a refinement of T if T can be obtained from T ′ by contracting a
set of edges in E(T ′). A tree T is fully resolved (i.e., binary) if there is no tree that refines T
other than itself.

A set Y of bipartitions on some leaf set S is compatible if there exists an unrooted tree T
leaf-labelled by S such that Y ⊆ C(T ); furthermore, when a set of bipartitions is compatible
then there is a unique tree such that Y = C(T ). In addition, pairwise compatibility of a
set of bipartitions ensures setwise compatibility [11, 12]. A bipartition πe of a set S is said
to be compatible with a tree T with leaf set S if and only if there is a tree T ′ such that
C(T ′) = C(T ) ∪ {π} (i.e., T ′ is a refinement of T that includes the bipartition π). Similarly,
two trees on the same leaf set are said to be compatible if they share a common refinement; it
then follows that two trees are compatible if and only if the union of their sets of bipartitions
is compatible.

Given a phylogenetic tree T on taxon set S, T restricted to R ⊆ S is the minimal
subgraph of T connecting elements of R and suppressing nodes of degree two. We denote
this as T |R. If T and T ′ are two trees with R as the intersection of their leaf sets, their
shared edges are edges whose bipartitions restricted to R are in the set C(T |R) ∩ C(T ′|R).
Correspondingly, their unique edges are edges whose bipartitions restricted to R are not in
the set C(T |R) ∩ C(T ′|R). See Figure 1 for a pictorial depiction of unique and shared edges.

The Robinson-Foulds (RF) distance [28] between two trees T and T ′ on the same set of
leaves is the number of bipartitions present in only one tree; equivalently, the RF distance is
equal to the total number of unique edges in both trees. The normalized RF distance is the
RF distance divided by 2n− 6, where n is the number of leaves in each tree; this produces a
value between 0 and 1 since the two trees can only disagree with respect to internal edges
and n− 3 is the maximum number of internal edges in an unrooted tree with n leaves.
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2.2 RF-Optimal Tree Refinement and Completion (RF-OTRC) Problem
Input: An unrooted binary tree T on S and an unrooted tree t on R ⊆ S
Output: An unrooted binary tree T ′ on S with two key properties: (1) T ′ contains all the

leaves of S and is compatible with t (i.e., T ′|R is a refinement of t) and (2) T ′ minimizes
the RF distance to T among all binary trees satisfying condition (1).

If the trees t and T have the same set of taxa, then the RF-OTRC problem becomes the
RF-OTR (RF-Optimal Tree Refinement) problem, while if t is already binary but can
be missing taxa, then the RF-OTRC problem becomes the RF-OTC (RF-Optimal Tree
Completion) problem. OCTAL, presented in [7], solves the RF-OTC problem in O(n2) time,
and an improved approach presented by Bansal [1] solves the RF-OTC problem in linear
time. We refer to this faster approach as Bansal’s algorithm. In this paper we present
an algorithm that solves the RF-OTR problem exactly in polynomial time and show that
the combination of this algorithm with Bansal’s algorithm solves the RF-OTRC problem
exactly in O(n1.5 logn) time, where T has n leaves. We refer to the two steps together as
TRACTION (Tree Refinement And CompleTION).

2.3 TRACTION Algorithm
The input to TRACTION is a pair of unrooted trees (t, T ), where t is the estimated gene
tree on set R of species and T is the binary reference tree on S, with R ⊆ S. We note that
t may not be binary (e.g., if low support edges have already been collapsed) and may be
missing species (i.e., R ⊂ S is possible).

Step 1: Refine t so as to produce a binary tree t∗ with as many shared bipartitions with
T as possible (using a polynomial time algorithm described below).
Step 2: Add the missing species from T into t∗, minimizing the RF distance.

2.3.1 Step 1: Greedy Refinement of t

To compute t∗, we first refine t by adding all bipartitions from T |R that are compatible with
t; this produces a unique tree t′. If t′ is not fully resolved, then there are multiple optimal
solutions to the RF-OTR problem, as we will later prove. The algorithm selects one of these
optimal solutions as follows. First, we add edges from t that were previously collapsed (if
such edges are available). Next, we randomly refine the tree until we obtain a fully resolved
refinement, t∗. Note that if t′ is not binary, then t∗ is not unique. We now show that the
first step of TRACTION solves the RF-OTR problem.

I Theorem 1. Let T be an unrooted binary tree on leaf set S, and let t be an unrooted tree
on leaf set R ⊆ S. A fully resolved (i.e. binary) refinement of t minimizes the RF distance
to T |R if and only if it includes all compatible bipartitions from T |R.

Proof. Let C0 denote the set of bipartitions in T |R that are compatible with t. By the
theoretical properties of compatible bipartitions (Section 2.1), this means the set C0 ∪ C(t)
is a compatible set of bipartitions that define a unique tree t′ where C(t′) = C0 ∪ C(t). We
now prove that for any binary tree B that refines t, B minimizes the RF distance to T |R if
and only if B refines t′.

Consider a sequence of trees t = t0, t1, t2, . . . , tk, each on leaf set R, where ti is obtained
from ti−1 by adding one edge to ti−1, and thus adds one bipartition to C(ti−1). Let
δi = RF (ti, T |R)−RF (ti−1, T |R), so that δi indicates the change in RF distance produced
by adding a specific edge to ti−1 to get ti. Hence,
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RF (ti, T |R) = RF (t0, T |R) +
∑
j≤i

δj .

Since T is fully resolved, a new bipartition πi added to C(ti−1) is in C(T |R) if and only
if πi ∈ C0. If this is the case, then the RF distance will decrease by one (i.e., δi = −1).
Otherwise, πi 6∈ C0, and the RF distance to T |R will increase by one (i.e., δi = 1).

Now suppose B is a binary refinement of t. We split the bipartitions in C(B) \ C(t) into
two sets, X and Y , where X are bipartitions in C0 and Y are bipartitions not in C0. By
the argument just provided, it follows that RF (B, T |R) = RF (t, T |R)− |X|+ |Y |. Note that
|X ∪ Y | must be the same for all binary refinements of t, because all binary refinements of t
have the same number of edges. Thus, RF (B, T |R) is minimized when |X| is maximized, so
B minimizes the RF distance to T |R if and only if C(B) contains all the bipartitions in C0.
In other words, RF (B, T |R) is minimized if and only if B refines t′. J

I Corollary 2. TRACTION finds an optimal solution to the RF-OTR problem.

Proof. Given input gene tree t and reference tree T , both on the same leaf set, TRACTION
produces a tree t′′ that refines t and contains every bipartition in T that is compatible with
t; hence by Theorem 1, TRACTION solves the RF-OTR problem. J

2.3.2 Step 2: Adding in missing species

The second step of TRACTION can be performed using OCTAL or Bansal’s algorithm,
each of which finds an optimal solution to the RF-OTC problem in polynomial time. More
generally, we show that any method that optimally solves the RF-OTC problem can be used
as an intermediate step to solve the RF-OTRC problem.

To prove this, we first restate several prior theoretical results. In the proof of correctness
for OCTAL, [7] showed the minimum achievable RF distance between T and T ′ is given by:

RF (T, T ′) = RF (T |R, t) + 2m (1)

where m is the number of Type II superleaves in T relative to t, which we now define.

I Definition 3. Let T be a binary tree on leaf set S and t be a tree on leaf set R ⊆ S. The
superleaves of T with respect to t are defined as follows (see Figure 1). The set of edges in
T that are on a path between two leaves in R define the backbone; when this backbone is
removed, the remainder of T breaks into pieces. The components of this graph that contain
vertices from S \R are the superleaves. Each superleaf is rooted at the node that was incident
to one of the edges in the backbone, and is one of two types:

Type I superleaves: the edge e in the backbone to which the superleaf was attached is a
shared edge in T |R and t
Type II superleaves: the edge e in the backbone to which the superleaf was attached is a
unique edge in T |R and t

I Theorem 4 (Restatement of Theorem in [7]). Given unrooted binary trees t and T with the
leaf set of t a subset of the leaf set S of T , OCTAL(T, t) solves the RF-OTC problem and
runs in O(n2) time, where T has n leaves.

WABI 2019
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Figure 1 Type I and Type II superleaves of a tree T with respect to t. Edges in the backbone
(defined to be the edges on paths between nodes in the common leaf set) are colored green for shared
and red for unique; all other edges are colored black. The deletion of the backbone edges in T defines
the superleaves; one is a Type I superleaf because it is attached to a shared (green) edge and the
other is a Type II superleaf because it is attached to a unique (red) edge. This figure is taken from
[7].

2.4 Proof of correctness for TRACTION
I Theorem 5. Let T be an unrooted binary tree on leaf set S with |S| = n, and let t be an
unrooted tree on leaf set R ⊆ S. TRACTION returns a binary unrooted tree T ′ on leaf set S
such that RF (T ′, T ) is minimized subject to T ′|R refines t. The first stage (refining t) takes
O(|S| + |R|1.5 log(|R|)) time. Hence, TRACTION runs in O(n1.5 logn) time if used with
Bansal’s algorithm and O(n2) time if used with OCTAL.

Proof. By construction TRACTION outputs a tree T ′ that, when restricted to the leaf set
of t, is a refinement of t. Hence, it is clear that T ′|R refines t. Now, it is only necessary to
prove that RF(T ′, T ) is minimized by TRACTION. Since the intermediate tree t∗ produced
in the first step of TRACTION is binary, Theorem 4 gives that TRACTION using OCTAL
(or any method exactly solving the RF-OTC problem) will add leaves to t∗ in such a way as
to minimize the RF distance to T .

As given in Equation 1, the optimal RF distance between T ′ and T is the sum of two
terms: 1) RF(t∗, T |R) and 2) the number of Type II superleaves in T relative to t∗. Theorem
1 shows that TRACTION produces a refinement t∗ that minimizes the first term. All that
remains to be shown is that t∗ is a binary refinement of t minimizing the number of Type II
superleaves in T relative to t∗.

Consider a superleaf X in T with respect to t. If t were already binary, then every
superleaf X is either a Type I or a Type II superleaf. Also, note that every Type I superleaf
in T with respect to t will be a Type I superleaf for any refinement of t. However, when t is
not binary, it is possible for a superleaf X in T to be a Type II superleaf with respect to t but
a Type I superleaf with respect to a refinement of t. This happens when the refinement of t
introduces a new shared edge with T to which the superleaf X is attached in T . Notice that
since the set of all possible shared edges that could be created by refining t is compatible, any
refinement that maximizes the number of shared edges with T also minimizes the number of
Type II superleaves. Theorem 1 shows that TRACTION produces such a refinement t∗ of
t. Thus, TRACTION finds a binary unrooted tree T ′ on leaf set S such that RF(T ′, T ) is
minimized subject to the requirement that T ′|R refine t.
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We now analyze the running time, focusing on the first stage. Constructing T |R takes
O(|S|) time. Checking compatibility of a single bipartition with a tree on K leaves, and then
adding the bipartition to the tree if compatible, can be performed in only O(|K|0.5 log(|K|))
after a fast preprocessing step (see Lemmas 3 and 4 from [14]). Hence, determining the set of
edges of T |R that are compatible with t takes only O(|S|+ |R|1.5 log(|R|)) time. Therefore,
the first stage of TRACTION takes O(|S|+ |R|1.5 log(|R|)) time. Hence, if used with OCTAL,
TRACTION takes O(|S|2) time and if used with Bansal’s algorithm TRACTION takes
O(|S|1.5 log |S|) time. J

3 Evaluation

Overview. We evaluated TRACTION in comparison to Notung, ecceTERA, profileNJ,
TreeFix, and TreeFix-DTL on estimated gene trees under two different model conditions
(ILS-only and ILS+HGT), using estimated species trees. In total, we analyzed 68,000 genes:
8,000 with 26 species under ILS-only models and 60,000 with 51 species under ILS+HGT
models. All estimated gene trees we correct in these experiments were complete (i.e., have all
the species). The motivation for this is two-fold. First, the methods we benchmark against
do not provide an option for completing gene trees with missing data. This is understandable
since these methods were developed for GDL, where missing species in a gene tree are
interpreted as true loss events rather than incomplete sampling. Second, an experimental
evaluation of OCTAL, the algorithm that performs the completion step of TRACTION, was
previously performed in [7].

Datasets. We briefly describe the datasets used in this study (all are from prior studies
[8, 7] and available online). The datasets include single copy genes with 26 or 51 species
(each with a known outgroup), and were generated under model conditions where true gene
trees and true species trees differed due to only ILS (two levels of ILS) or to both ILS and
HGT (one ILS level but two levels of HGT). The true gene tree heterogeneity (GT-HET,
the topological distance between true species trees and true gene trees) ranged from 10% (for
the ILS-only condition with moderate ILS) to as high as 68% (for the ILS+HGT condition
with high HGT). Each model condition has 200 genes, and we explore multiple replicates per
model condition with different sequence lengths per gene. See Table 1 for details.

Estimated gene trees and estimated reference species trees. For each gene, we used
RAxML v8.2.11 [29] under the GTRGAMMA model to produce maximum likelihood gene
trees, with branch support computed using bootstrapping. Because sequence lengths varied,
this produced estimated gene trees with different levels of gene tree estimation error (GTEE)
(defined to be the average RF distance between the true gene tree and the estimated gene
tree), ranging from 32% to 63% as defined by the missing branch rate (see Table 1). We
estimated a species tree using ASTRID v1.4 [32] on the RAxML gene trees. Since we know
the true outgroup for all species trees and gene trees, we used this in our performance study
to root the input species tree and the estimated gene trees, given as input to all methods.

The gene trees given as input to the different methods were computed as follows. Each
edge in each RAxML gene tree we computed was annotated with its bootstrap branch
support, and we identified all the branches with bootstrap support less than 75% (the
standard threshold for “low support”). Low support branches were collapsed in the gene trees
before being given to TRACTION, Notung, and ProfileNJ. When we ran ecceTERA, we gave
the binary gene trees with the threshold value (i.e., minimum required bootstrap support

WABI 2019
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Table 1 Empirical properties of the simulated datasets used in this study: GT-HET (gene tree
heterogeneity, the average normalized RF distance between true gene trees and true species trees);
GTEE (average gene tree estimation error); and the average distance of the ASTRID reference
tree to the true gene trees. The publications from which the simulated datasets are taken are
also indicated. In total we analyzed 68,000 genes with varying levels and causes of true gene tree
heterogeneity (to the true species tree) and gene tree estimation error. The ILS-only conditions each
had 20 replicates, and the ILS+HGT conditions each had 50 replicates.

GT-HET GTEE Distance ASTRID to true gene trees

ILS-only, Low ILS, 26 species [7]
# sites varies 0.10 0.32 0.08

ILS-only, High ILS, 26 species [7]
# sites varies 0.36 0.40 0.33

ILS+HGT, Moderate HGT (m5), 51 species [8]
100 sites 0.54 0.63 0.55

250 sites 0.54 0.47 0.55

500 sites 0.54 0.47 0.54

ILS+HGT, High HGT (m6), 51 species [8]
100 sites 0.68 0.62 0.68

250 sites 0.68 0.46 0.68

500 sites 0.68 0.38 0.68

value) of 75%; ecceTERA then collapses all branches that have support less than 75%, and
explores the set of refinements. Thus, the protocol we followed ensures that ecceTERA,
ProfileNJ, Notung, and TRACTION all used the same set of collapsed gene trees. TreeFix
and Treefix-DTL used the uncollapsed gene trees.

Gene tree correction and integrative methods. The RAxML gene trees were corrected
using TRACTION v1.0, Notung v2.9, ecceTERA v1.2.4, ProfileNJ (as retrieved from GitHub
after the March 20, 2018 commit with ID 560b8b2) [27], TreeFix v1.1.10 (for the ILS-
only datasets), and TreeFix-DTL v1.0.2 (for the HGT+ILS datasets), each with a species
tree estimated using ASTRID v1.4 [32] as the reference tree rooted at the outgroup. The
integrative methods (TreeFix, TreeFix-DTL, and ProfileNJ) also required additional input
data related to the gene alignments, which we detail in the appendix. All estimated gene
trees are complete (i.e., there are no missing taxa), so TRACTION only refines the estimated
gene tree and does not add any taxa.

Evaluation criteria. We use RF tree error (the standard criterion in performance studies
evaluating phylogeny estimation methods) to quantify error in estimated and corrected gene
trees as compared to the known true gene tree (as defined in the simulation protocol) and
the impact of TRACTION, Notung, ecceTERA, and TreeFix-DTL, on these errors. Note
that although we use the RF distance within the OTR optimization criterion, there it refers
to the distance between the corrected gene tree and the reference tree (which is an estimated
species tree); in contrast, when we use the RF error rate in the evaluation criterion, in that
context it refers to the distance between the corrected gene tree and the true gene tree. Since
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Figure 2 Comparison of methods on the ILS-only datasets with respect to average RF error rate,
as a function of GTEE. Results are only shown for those datasets on which all methods complete.
Each model condition (characterized by ILS level) has 20 replicate datasets, each with 200 genes.

the reference trees used in our experiments are typically very topologically different from
the true gene tree (8% RF distance for the moderate ILS condition, 33% for the high ILS
condition, 54% to 68% for the ILS+HGT conditions, see Table 1), optimizing the RF distance
to the reference tree is quite different from optimizing the RF distance to the true gene tree.

Experiments. We performed two main experiments: one in which we explored performance
on ILS-only datasets and the other in which we explored performance on datasets with
HGT and ILS. In each case, we directly explored how the GTEE level impacted absolute
and relative accuracy of the gene tree correction methods. We also indirectly explored how
GT-HET affects relative and absolute accuracy. The heterogeneity is higher on the HGT+ILS
datasets than on the ILS-only datasets, as HGT adds to the heterogeneity between gene
trees and species trees (see Table 1).

4 Results and Discussion

Experiment 1: Comparison of methods on ILS-only datasets. Not all methods completed
on all datasets: ecceTERA failed to complete on 67 datasets, profileNJ failed to complete on
two datasets, and all other methods completed on all datasets. Results shown in Figure 2 are
restricted to those datasets on which all methods completed; see the Appendix for additional
results. For the moderate ILS condition (Figure 2 (top)), all methods are able to improve on
RAxML, and the degree of improvement increases with GTEE. For the high ILS condition
(Figure 2 (bottom)), methods improve on RAxML only when GTEE is at least 20%. Thus,
GTEE and ILS level both impact whether methods can improve on RAxML. Furthermore, the
methods group into two sets: TRACTION, Notung, and TreeFix performing very similarly
and ProfileNJ and ecceTERA having somewhat higher error.
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Figure 3 Comparison of methods on ILS+HGT datasets with respect to average RF error rate
(max is 1.0), as a function of GTEE (gene tree estimation error of the RAxML gene trees); ecceTERA
failed on many datasets (with increasing failure rate as GTEE increases), and so those results are
not shown. Results shown here are for only those datasets on which all methods completed.

Experiment 2: Comparison of methods on the HGT+ILS datasets. The HGT+ILS
datasets have heterogeneity due to both HGT and ILS, with the degree of HGT varying
from moderate (m5) to high (m6). On these data, ecceTERA failed on 1,318 datasets with
the failure rates increasing as the gene tree estimation error of the initial RAxML gene
tree (GTEE) increased: it failed 0% of the time when GTEE is less than 40%, 0.4% of
the time when GTEE is 40-60%, 23.6% of the time when GTEE is 60-80%, and 90.8% of
the time when GTEE is at least 80%. Because of the high failure rate, we do not report
results for ecceTERA under these conditions. Figure 3 shows the impact of the remaining
methods on RAxML gene trees as a function of GTEE. The relative performance between
the remaining methods show that TRACTION and Notung are more accurate than profileNJ
and TreeFix-DTL, with the gap between the two groups increasing with GTEE. We also see
that TRACTION has an advantage over Notung for the low GTEE condition and matches
the accuracy on the higher GTEE conditions. Finally, for the lowest GTEE bin, no method
improves the RAxML gene tree, some methods make the gene trees much less accurate (e.g.,
profileNJ), and only TRACTION maintains the accuracy of the RAxML gene tree. Overall,
on the HGT+ILS datasets, TRACTION consistently does well and has a clear advantage
over the other methods in terms of accuracy.

Running Times. We selected a random sample of the 51-taxon HGT+ILS datasets to
evaluate the running time (see Table 2). From fastest to slowest, the average running times
were 0.5 seconds for TRACTION, 0.8 seconds for Notung, 1.7 seconds for ProfileNJ, 3.8
seconds for TreeFix-DTL, and 29 seconds for ecceTERA. Furthermore, most of the methods
had consistent running times from one gene to another, but ecceTERA had high variability,
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depending on the size of the largest polytomy. When the largest polytomy was relatively
small, it completed in just a few seconds, but it took close to a minute when the largest
polytomy had a size at the limit of 12. Results on other HGT+ILS replicates and model
conditions gave very similar results.

Table 2 Total time (in seconds) for each method to correct 50 gene trees with 51 species on one
replicate (label 01) of the HGT+ILS dataset with moderate HGT and sequences of length 100bp.

Method Time (s)
EcceTERA 1470
NOTUNG 43
TRACTION 30
ProfileNJ 87

TreeFix-DTL 188

Overall comments. This study shows that the better methods for gene tree correction
(TRACTION, Notung, and TreeFix) reliably produce more accurate gene trees than the
initial RAxML gene trees for the ILS-only conditions (except for cases where the initial gene
tree is already very accurate), and the improvement can be very large when the initial gene
trees are poorly estimated. However, the impact of gene tree correction is reduced for the
HGT+ILS scenarios, where improvement over the initial gene tree is only obtained when
GTEE is fairly high. As shown in Table 1, the average normalized RF distance between the
reference tree (ASTRID) and the true gene trees is never more than 33% for the ILS-only
scenarios but very high for the HGT+ILS scenarios (54% for moderate HGT and 68% for
high HGT). Since the reference tree is the basis for the correction of the gene trees, it is not
surprising that improvements in accuracy are difficult to obtain for the HGT+ILS scenario.
On the other hand, given the large distance between the reference tree and the true gene
tree, the fact that improvements are obtained for several methods (TRACTION, Notung,
and TreeFix-DTL) is encouraging.

5 Conclusions

We presented TRACTION, a method that solves the RF-OTRC problem exactly in
O(n1.5 logn) time, where n is the number of species in the species tree; the algorithm
itself is very simple, but the proof of optimality is non-trivial. TRACTION performs well,
matching or improving on the accuracy of competing methods on the ILS-only datasets and
dominating the other methods on the HGT+ILS datasets. Furthermore, although all the
methods are reasonably fast on these datasets, TRACTION is the fastest on the 51-taxon
gene trees, with Notung a close second.

The observation that TRACTION performs as well (or better) than the competing
methods (ecceTERA, ProfileNJ, Notung, TreeFix, and TreeFix-DTL) is encouraging. How-
ever, the competing methods are all based on stochastic models of gene evolution that are
inherently derived from gene duplication and loss (GDL) scenarios (and in one case also
allowing for HGT), and thus it is not surprising that GDL-based methods do not provide
the best accuracy on the ILS-only or HGT+ILS model conditions we explore (and to our
knowledge, all the current methods for gene tree correction are based on GDL models). Yet,
TRACTION has good accuracy under a wide range of scenarios. We conjecture that this
generally good performance is the result of its non-parametric criterion which can help it to
be robust to model mis-specification (of which gene tree estimation error is one aspect).
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This study showed that when the reference tree is very far from the true gene trees (as
for our HGT+ILS data), gene tree correction typically fail to improve the initial gene tree
(and even here, some methods can make the gene tree worse). This brings into question why
the species tree (whether true or estimated) is used as a reference tree. We note that while
the GDL-based methods may benefit from the use of a species tree as a reference tree (since
the correction is based on GDL scenarios), this type of reference tree may not be optimal
for TRACTION, which has no such dependency. Thus, part of our future work will be to
explore techniques (such as statistical binning [3, 23]) that might enable the estimation of a
better reference tree for TRACTION in the context of a multi-locus phylogenomic analysis.

This study suggests several other directions for future research. The GDL-based methods
have variants that may enable them to provide better accuracy (e.g., alternative techniques
for rooting the gene trees, selecting duploss parameter values, etc.), and future work should
explore these variants. Most gene tree correction methods have been developed specifically
to address the case where genes have multiple copies of species as a result of gene duplication
events. TRACTION is currently restricted to gene trees with at most one copy of each
species. In future work, we will explore extensions of TRACTION to handle multi-copy genes
by using a generalization of the RF distance, such as proposed in [5]. In particular, one could
construct the extended species tree to use as a reference along with a full differentiation of
the gene tree as described in [5]. Recent work has shown how Notung could be extended
to address HGT [19]; a comparison between TRACTION and a new version of Notung
that addresses HGT will need to be made when Notung is modified to handle HGT (that
capability is not yet available). Finally, the effect of gene tree correction on downstream
analyses should be evaluated carefully.
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A Details about the Experimental Design

The datasets we used are from prior publications (which should be consulted for full details).
The information for Steps 1-2 provided here describe the high-level process used to generate
these datasets for those studies, Step 3 describes the process used to estimate gene trees,
and Steps 4-6 describe the high-level process used to correct gene trees.

Step 1: A model species tree and model gene trees (evolved within the model species
tree) were generated using SimPhy [22]. This produced a set of gene trees that could
differ from the species tree due to ILS alone or due to both ILS and HGT. Importantly,
SimPhy modifies gene tree branch lengths to deviate from a strict molecular clock.
Step 2: Molecular sequences were generated using INDELible [13] by evolving sequences
down each true gene tree under the GTR+GAMMA model of sequence evolution without
insertions or deletions. GTR+GAMMA model parameters and sequence lengths were
drawn from distributions as described in [24]. Because the sequence length parameter
was drawn from a distribution, sequences had different lengths. In some experiments,
sequence lengths were truncated to 100, 250, or 500 sites before estimating gene trees in
order to vary the degree of gene tree estimation error.
Step 3: Binary gene trees were estimated on each gene sequence alignment using RAxML,
a maximum likelihood (ML) heuristic, under the GTR+GAMMA model, with all numeric
parameters estimated directly from the data. Branch support for each internal branch in
the best ML tree was computed using the RAxML rapid bootstrapping procedure [29]
with 100 bootstrap replicates for the ILS-only datasets and 50 bootstrap replicates for
the ILS+HGT datasets.
Step 4: Species trees were estimated on each multi-gene dataset using ASTRID [32] on
the estimated (best ML) gene trees from Step 3.
Step 5: For each estimated (best ML) gene tree, all edges with branch support below
75% were collapsed to produce a set of “collapsed gene trees”.
Step 6: Estimated gene trees were corrected using the ASTRID tree from Step 4 as
the reference tree. The input reference tree was rooted at the outgroup for all gene tree
correction methods except for TRACTION. TRACTION and Notung were given the
collapsed gene trees as input, whereas TreeFix, TreeFix-DTL, and ecceTERA were given
the best ML gene trees (without any edges collapsed) as input. To run ecceTERA, we
specified the threshold value (i.e., minimum required bootstrap support value), with
the default setting of 75%; ecceTERA then collapses all branches that have support
less than that value and exhaustively evaluates all refinements. However, when the
collapsed gene trees have polytomies of degree greater than 12, then ecceTERA lowers
the threshold until all polytomies have degree at most 12. Finally, Notung, ProfileNJ,
and ecceTERA required that the input gene trees be rooted, so we rooted these input
gene trees at the outgroup.

B Commands

In the following commands, “resolved gene trees” refers to the gene trees estimated using
RAxML, “unresolved gene trees” refers to these estimated gene trees with branches having
bootstrap support less than 75% collapsed, and “reference species tree” refers to the species
tree estimated using ASTRID. Rooted means the input tree was rooted at the outgroup.
RAxML v8.2.11 was run as

raxml -f a -m GTRGAMMA -p 12345 -x 12345 -N <# bootstrap replicates> \
-s <alignment file> -n <output name>



S. Christensen, E. K. Molloy, P. Vachaspati, and T. Warnow 4:15

ASTRID v1.4 was run as
ASTRID -i <resolved gene trees> -o <output>

Notung v2.9 was run as
java -jar Notung-2.9.jar --resolve -s <rooted reference species tree> \

-g <rooted unresolved gene tree> --speciestag postfix \
--treeoutput newick --nolosses

TRACTION v1.0 was run as
traction.py --refine -r -s 12345 -b <unrooted reference species tree> \

-u <unrooted resolved gene trees> -i <unrooted unresolved gene trees> \
-o <output>

ecceTERA v1.2.4 was run as
eccetera resolve.trees=0 \

collapse.mode=1 \
collapse.threshold=75 \
dated=0 print.newick=true \
species.file=<rooted reference species tree> \
gene.file=<rooted resolved gene tree>

Since ecceTera enters an infinite loop on some gene trees, the “timeout” command was used
to kill ecceTera if it took more than five minutes on a single gene tree.
ProfileNJ requires a distance matrix; to compute distance matrices (with K2P-corrected
distances) for ProfileNJ, FastME v2.1.6.1 [20] was run as

fastme -i <input gene alignment> -O <output distance matrix> -dK
ProfileNJ was run as

profileNJ \
-g <rooted unresolved gene tree> \
-s <rooted reference species tree> \
-d <distance matrix> \
-o <output> \
-S <name map> \
-r none \
-c nj \
--slimit 1 \
--plimit 1 \
--firstbest \
--cost 1 0.99999

TreeFix v1.1.10 was run on the ILS-only datasets as
treefix -s <rooted reference species tree> \

-S <name map> \
-A <alignment file extension> \
-o <old tree file extension> \
-n <new tree file extension> \
<resolved gene tree>

TreeFix-DTL v1.0.2 was run on the HGT+ILS datasets as
treefixDTL -s <rooted reference species tree> \

-S <map file> \
-A <alignment file extension> \
-o <old gene tree file extension> \
-n <new gene tree file extension> \
<resolved gene tree>

Normalized Robinson-Foulds distances were computed using Dendropy v4.2.0 [30] as
n1 = len(t1.internal_edges(exclude_seed_edge=True))
n2 = len(t2.internal_edges(exclude_seed_edge=True))
[fp, fn] = false_positives_and_negatives(t1, t2)
rf = float(fp + fn) / (n1 + n2)
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B.1 Details about failures
No method other than ecceTERA and profileNJ failed on any datasets.

B.1.1 ecceTERA failures
In our analyses for the ILS-only datasets, ecceTERA failed on 10/4000 genes (moderate ILS)
and 57/4000 genes (high ILS). In our analyses for the ILS+HGT datasets, ecceTERA failed
on 744/7500 genes (moderate HGT) and 574/7500 genes (high HGT). Notably, the number
of datasets that ecceTERA failed on increased with gene trees estimation error; for example,
for datasets with ILS and HGT, ecceTERA completed on 100% of datasets with GTEE in
(0.0, 0.4], 99.6% of datasets with GTEE in (0.4, 0.6], 76.4% of datasets with GTEE in (0.6,
0.8], and 9.2% of datasets with GTEE in (0.8, 1.0].

B.1.2 profileNJ failures
ProfileNJ computes distances to construct the corrected gene tree; when used with FastME,
it failed on 2/4000 genes for the ILS-only condition (moderate ILS).
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